GPT-5只会更笨!斯坦福莱斯研究警告,AI训AI超过5次,模型反噬,性能大减

创建时间:2023-07-25 11:04
转自:新智元
编辑:桃子 Lumina
【导读】AI训AI会让模型性能变差。最新来自斯坦福的研究揭露,使用AI生成的数据训练次数超过5次,模型就会出现崩溃。

用AI生成的数据训练AI,不会有魔法,只会被反噬。
近日,莱斯大学和斯坦福团队发现,将AI生成的内容喂给模型,只会导致性能下降。
研究人员对此给出一种解释,叫做「模型自噬障碍」(MAD)。

论文地址:https://arxiv.org/abs/2307.01850
研究发现在使用AI数据,经过第5次迭代训练后,模型就会患上MAD。

在合成数据上训练AI模型会逐渐放大伪影
换句话说,如果不能给模型提供「新鲜的数据」,即由人类标注的数据,其输出质量将会受到严重影响。

拒绝模型「内耗」

目前,MAD尚未确认会影响所有AI模型,不过研究人员已经对自编码器、高斯混合模型、大语言模型进行了验证。
作者写道,「世界正在奔向一个未来,生成式AI的爆发,导致了互联网上的合成数据,很快就会超过真实数据。」
因此,当前的AI模型,正在不知不觉中接受越来越多的人工智能合成数据的训练。
比如,目前已知且开源的最大规模多模态数据集LAION-5B,已经用于训练当前最先进的文本-图像模型,包括Stable Diffusion。
这个数据集就包含了,从早期生成模型中采样的合成图像。
合成数据受欢迎的主要原因在于4点:

- 合成训练数据比获取真实世界的样本更容易、更快、更便宜

- 某种情况下,合成数据增强可以提高AI系统的性能

- 可以在医学成像或医疗记录等敏感应用中保护隐私

- 最重要一点,随着深度学习模型参数越来越庞大,现几乎没有真实数据可用了
为了获取更多真实数据,就连OpenAI近日与美联社签订协议,双方将共享部分新闻内容和技术。
但是,不管是有意,还是无意使用合成数据,已经背离了标准的AI训练实践:
一代又一代地重复这一过程形成了一个自噬循环(autophagous loop),也就是自耗(self-consuming)。
不同的自噬环变化取决于,现有的真实数据和合成数据如何组合到未来的训练集中。
然而,根据合成数据的生成方式,还会出现其他变化。
比如,研究者或算法通常会通过手动「挑选」合成数据来引入采样偏差,以权衡感知质量(即图像/文本看起来来不错)与多样性(不同类型图像/文本)。
研究者介绍,「质量」和「多样性」两个非正式概念,分别与精确度和召回率的统计指标密切相关。
如果合成数据已经存在于我们今天的训练数据集中,那么自噬循环在未来几乎是不可避免的。
那么影响究竟有多大?
研究人员表示,无论训练集的组成,或采样方法如何,自噬循环对生成模型的属性和性能的潜在影响仍知之甚少。
而有一点可以确定的是,使用合成数据重复训练可能会,逐渐放大任何生成模型中存在的偏差和伪影。
总之,这项研究有三个重要贡献:
1. 自噬循环的真实模型
团队研究了自噬循环的3种变体:完全合成循环,其中生成模型仅在前几代的合成样本上进行训练;合成增强循环,其中训练集还包括一组固定的真实数据;新数据循环,其中训练集还包括每一代的一组新的真实数据。
所有这3种自噬循环模型的底线是,如果每一代没有足够的新鲜真实数据,未来的生成模型注定会MAD。
2. 采样偏差在自噬循环中起着关键作用
模型实践者倾向于手动挑选合成数据,更喜欢高质量的样本,并删除低质量的样本。此外,最先进的生成模型通常具有可控参数,可以以牺牲多样性为代价来提高合成质量。
研究证明,通过这种质量多样性(精确召回)权衡引起的采样偏差,对自噬训练循环的行为有重大影响。
具体来讲,在没有采样偏差的情况下,自噬会导致质量和多样性的快速下降,而在采样偏差的情况下,质量可以保持,但多样性下降得更快。
3. 自噬循环行为适用于各种生成模型和数据集
除了对简单多元高斯和高斯混合模型的分析和实证研究之外,团队还在正文和附录中,证明了主要结论适用于各种生成模型。
部分实验结果
在没有采样偏差的全合成循环中,完全使用合成数据训练生成模型,其合成数据的质量和多样性都会逐代下降。

在全合成循环中,生成的合成FFHQ和MNIST图像的FID、精度和多样性(召回率)
研究者给出了MNIST的真实数据和合成数据的t-SNE图,这些数据来自没有采样偏差的全合成环路(λ = 1)。
可以看到,生成的模式逐渐合并,相互之间失去了分离。到第10代,生成的样本几乎无法辨认。

在没有采样偏差的情况下,合成数据模型会偏离真实模型并合并
研究还发现,提高合成质量会损害合成多样性。

在高质量合成数据上训练生成模型总是会导致合成质量或合成多样性的损失
由于采样偏差,合成数据模型会围绕单个(高质量)图像偏移和崩溃,而不是合并。

给生成数据打水印

所有这些会出现MAD症状的模型都已经广泛应用,并运行一段时间了:
自编码器可以处理诸如流行预测(例如社交媒体应用程序的算法)、图像压缩、图像去噪和图像生成等任务;
高斯混合模型用于密度估计、聚类和图像分割等目的,在统计学和数据科学中特别有用。
如今流行的 ChatBot, 其应用的大型语言模型(如ChatGPT,和Anthropic的Claude)使用自己生成的内容进行训练时,也容易在训练中出现MAD现象。
同时,这些也强调了这些AI系统在我们生活中的重要性:算法人工智能模型在企业和公共领域都得到了广泛应用。
这项研究提供了一种窥探「AI技术黑箱」的方法。
但也粉碎了我们从某些AI模型中制造一个「仓鼠轮」的希望:将数据输入模型,然后将其自身生成的数据再次输入模型,产生更多的数据再反馈进模型的过程。
反而这种训练方式会对当前存在的模型,以及这些模型的应用造成威胁。
如果一个已经商业化使用的模型事实上是通过对其自身的输出进行训练的,那么该模型很可能已经向其平均值回归(记住,这需要大约5个输入输出周期才能显现)。

模型崩溃过程示意图
如果该模型向其平均值回归,那么它在某种程度上已经存在着偏见,因为它没有考虑到本应属于少数派的数据。这也可以称之为算法上的偏见。
研究结果中得出的另一个重要观点是对数据来源的关注。现在更加重要的是能够将「原始」数据与「人工」数据区分开来。
如果无法确定哪些数据是由LLM或生成图像应用程序创建的,可能会不小心将其包含在下一代产品的训练数据中。
不幸的是,这个问题很可能已经无法挽回:这些类型的网络已经产生了大量未标记的数据,并被纳入其他系统中。
即使我们在ChatGPT或Midjourney的爆发之前拥有整个互联网的快照,但长期以来AI生成的数据每天都在大量涌入全球网络,更别说它们运行时产生的巨量数据。

模型崩溃成因的示意图
但即便如此,至少我们已经知道了这一点。
知道这一点,意味着寻找一种可以识别AI生成内容的水印(这是绝对正确的)已经成为一项更为重要和更有利可图的工作,标记AI生成数据的责任也变得更为严肃。
除此之外,还有其他方法可以弥补这些偏差。
其中一种方法是简单改变模型的权重:增加分布尾部的结果的相关性或频率,它们将自然地沿着钟形曲线移动,靠近均值。这意味着它们就不太容易被修剪掉,从而避免了自动生成训练中的数据丧失。
模型仍然会丢失曲线边缘的数据,但这些数据不再是唯一的数据来源了。
但是,权重是如何决定的?权重应该如何调整?频率应该增加多少?
此外,我们也有责任了解模型微调的影响、以及这些影响的后果如何影响模型最终的生成内容。
以上每个问题的回答都会引发一系列其他问题的关注:
与模型回答背后的真实性相关的问题(其中偏差被称为幻觉);
模型是否存在偏见,以及这种偏见的根源(如果是来自训练数据本身或用于创建网络的权重过程,现在我们也从MAD过程中了解到了);
当模型训练自己的数据时会发生什么.....但如我们所看到的,最后结果并不理想。
同样地,这个问题也是不可忽视的:
就像不接触新知识的人会越来越固步自封和偏执。这与「模型在自己生成的内容上训练时,它会崩溃」是相同的道理。

参考资料:

https://www.tomshardware.com/news/generative-ai-goes-mad-when-trained-on-artificial-data-over-five-times

https://arxiv.org/pdf/2307.01850.pdf

https://futurism.com/ai-trained-ai-generated-data

https://www.tweaktown.com/news/92328/scientists-make-ai-go-crazy-by-feeding-it-generated-content/index.html

浏览量:0

推荐文章

  • 解锁 DeepSeek 一体机:从购买到本地化部署,开启智算新征程​

    在当今数字化时代,人工智能(AI)技术的迅猛发展正深刻改变着各个行业的运作模式。大模型作为 AI 领域的核心驱动力,其应用范围不断拓展,对算力的需求也日益增长。在这一背景下,DeepSeek 一体机凭借其独特的优势,成为了众多企业和科研机构实现高效智算的关键设备。本文将深入探讨 DeepSeek 一体机的相关内容,包括其与 DeepSeek - R1 大模型的紧密联系、购买途径以及本地化部署的要点。

    0 2025-04-02
  • 迈络思与英伟达携手,以 IB 组网和 GPU 池化管理赋能算力调度新变革

    在数字化转型的浪潮中,算力已成为驱动各行业创新发展的核心要素。随着人工智能、大数据、高性能计算等领域应用的不断深化,对算力的需求呈现出爆发式增长,且对算力的高效管理与灵活调配提出了更高要求。在此背景下,Infiniband 组网(IB 组网)、GPU 池化管理以及算力调度等技术成为构建先进计算基础设施的关键,而迈络思(Mellanox)与英伟达(NVIDIA)作为行业内的领军企业,正通过紧密合作,推动这些技术的创新发展与广泛应用。

    0 2025-04-02
  • 大空间下的数字互动变革:PICO、HTCVIVE 与数字人动作捕捉的融合探索

    在科技飞速发展的当下,虚拟现实(VR)和增强现实(AR)技术正以前所未有的速度改变着人们的交互体验。大空间多人互动作为其中的重要应用方向,为用户带来了更加沉浸式、社交化的体验。而数字人动作捕捉技术则为虚拟角色赋予了更加真实生动的表现力。在这一技术浪潮中,PICO 和 HTCVIVE 等知名品牌凭借其先进的硬件设备,成为推动大空间多人互动和数字人动作捕捉应用落地的重要力量。

    0 2025-04-02
  • 英伟达 H20 引领算力租赁新时代,GPU 集群与 AI 服务器的协同变革

    在当今数字化时代,人工智能(AI)的发展可谓日新月异,而算力作为 AI 发展的核心驱动力,其重要性不言而喻。英伟达(NVIDIA)作为全球图形处理器(GPU)领域的佼佼者,一直以来都在推动 AI 算力的前沿发展。随着英伟达新一代 AI 处理器 H20 的亮相,更是在算力租赁市场掀起了全新的波澜,同时也深刻影响着 GPU 集群与 AI 服务器的发展格局。​

    0 2025-04-02
  • DeepSeek 一体机:解锁 DeepSeek - R1 大模型本地化部署与智算新可能

    在人工智能技术迅猛发展的当下,大模型已成为推动各行业智能化变革的核心驱动力。然而,如何高效地利用大模型的强大能力,实现本地化部署与便捷应用,成为众多企业和机构面临的关键问题。DeepSeek 一体机的出现,为这一难题提供了创新性的解决方案,尤其是其与 DeepSeek - R1 大模型的深度融合,在智算领域掀起了新的浪潮。​

    7 2025-04-01
  • Infiniband 组网与 GPU 池化管理:迈络思、英伟达引领算力调度新时代

    在当今数字化高速发展的时代,算力已然成为推动各行业进步的核心动力。无论是人工智能领域的大规模模型训练,还是数据中心对海量数据的高效处理,对算力的需求都呈现出爆发式增长。为了满足这种需求,高效的网络架构和智能的算力管理策略显得尤为重要。Infiniband 组网(IB 组网)、GPU 池化管理以及算力调度等技术应运而生,而迈络思(Mellanox)与英伟达(NVIDIA)在这些关键技术领域中扮演着举足轻重的角色。

    6 2025-04-01