NCCL源码解析①:初始化及ncclUniqueId的产生

作者|KIDGINBROOK
更新|潘丽晨
int e = cmd; \
if( e != MPI_SUCCESS ) { \
printf("Failed: MPI error %s:%d '%d'\n", \
__FILE__,__LINE__, e); \
exit(EXIT_FAILURE); \
} \
} while(0)
cudaError_t e = cmd; \
if( e != cudaSuccess ) { \
printf("Failed: Cuda error %s:%d '%s'\n", \
__FILE__,__LINE__,cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while(0)
ncclResult_t r = cmd; \
if (r!= ncclSuccess) { \
printf("Failed, NCCL error %s:%d '%s'\n", \
__FILE__,__LINE__,ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while(0)
static uint64_t getHostHash(const char* string) {
// Based on DJB2a, result = result * 33 ^ char
uint64_t result = 5381;
for (int c = 0; string[c] != '\0'; c++){
result = ((result << 5) + result) ^ string[c];
}
return result;
}
static void getHostName(char* hostname, int maxlen) {
gethostname(hostname, maxlen);
for (int i=0; i< maxlen; i++) {
if (hostname[i] == '.') {
hostname[i] = '\0';
return;
}
}
}
int main(int argc, char* argv[])
{
int size = 32*1024*1024;
int myRank, nRanks, localRank = 0;
//initializing MPI
MPICHECK(MPI_Init(&argc, &argv));
MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &myRank));
MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &nRanks));
//calculating localRank which is used in selecting a GPU
uint64_t hostHashs[nRanks];
char hostname[1024];
getHostName(hostname, 1024);
hostHashs[myRank] = getHostHash(hostname);
MPICHECK(MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, hostHashs, sizeof(uint64_t), MPI_BYTE, MPI_COMM_WORLD));
for (int p=0; p<nRanks; p++) {
if (p == myRank) break;
if (hostHashs[p] == hostHashs[myRank]) localRank++;
}
//each process is using two GPUs
int nDev = 2;
float** sendbuff = (float**)malloc(nDev * sizeof(float*));
float** recvbuff = (float**)malloc(nDev * sizeof(float*));
cudaStream_t* s = (cudaStream_t*)malloc(sizeof(cudaStream_t)*nDev);
//picking GPUs based on localRank
for (int i = 0; i < nDev; ++i) {
CUDACHECK(cudaSetDevice(localRank*nDev + i));
CUDACHECK(cudaMalloc(sendbuff + i, size * sizeof(float)));
CUDACHECK(cudaMalloc(recvbuff + i, size * sizeof(float)));
CUDACHECK(cudaMemset(sendbuff[i], 1, size * sizeof(float)));
CUDACHECK(cudaMemset(recvbuff[i], 0, size * sizeof(float)));
CUDACHECK(cudaStreamCreate(s+i));
}
ncclUniqueId id;
ncclComm_t comms[nDev];
//generating NCCL unique ID at one process and broadcasting it to all
if (myRank == 0) ncclGetUniqueId(&id);
MPICHECK(MPI_Bcast((void *)&id, sizeof(id), MPI_BYTE, 0, MPI_COMM_WORLD));
//initializing NCCL, group API is required around ncclCommInitRank as it is
//called across multiple GPUs in each thread/process
NCCLCHECK(ncclGroupStart());
for (int i=0; i<nDev; i++) {
CUDACHECK(cudaSetDevice(localRank*nDev + i));
NCCLCHECK(ncclCommInitRank(comms+i, nRanks*nDev, id, myRank*nDev + i));
}
NCCLCHECK(ncclGroupEnd());
//calling NCCL communication API. Group API is required when using
//multiple devices per thread/process
NCCLCHECK(ncclGroupStart());
for (int i=0; i<nDev; i++)
NCCLCHECK(ncclAllReduce((const void*)sendbuff[i], (void*)recvbuff[i], size, ncclFloat, ncclSum,
comms[i], s[i]));
NCCLCHECK(ncclGroupEnd());
//synchronizing on CUDA stream to complete NCCL communication
for (int i=0; i<nDev; i++)
CUDACHECK(cudaStreamSynchronize(s[i]));
//freeing device memory
for (int i=0; i<nDev; i++) {
CUDACHECK(cudaFree(sendbuff[i]));
CUDACHECK(cudaFree(recvbuff[i]));
}
//finalizing NCCL
for (int i=0; i<nDev; i++) {
ncclCommDestroy(comms[i]);
}
//finalizing MPI
MPICHECK(MPI_Finalize());
printf("[MPI Rank %d] Success \n", myRank);
return 0;
}
ncclResult_t ncclGetUniqueId(ncclUniqueId* out) {
NCCLCHECK(ncclInit());
NCCLCHECK(PtrCheck(out, "GetUniqueId", "out"));
return bootstrapGetUniqueId(out);
}
ncclResult_t initNet() {
// Always initialize bootstrap network
NCCLCHECK(bootstrapNetInit());
NCCLCHECK(initNetPlugin(&ncclNet, &ncclCollNet));
if (ncclNet != NULL) return ncclSuccess;
if (initNet(&ncclNetIb) == ncclSuccess) {
ncclNet = &ncclNetIb;
} else {
NCCLCHECK(initNet(&ncclNetSocket));
ncclNet = &ncclNetSocket;
}
return ncclSuccess;
}
static int findInterfaces(const char* prefixList, char* names, union socketAddress *addrs, int sock_family, int maxIfNameSize, int maxIfs) {
struct netIf userIfs[MAX_IFS];
bool searchNot = prefixList && prefixList[0] == '^';
if (searchNot) prefixList++;
bool searchExact = prefixList && prefixList[0] == '=';
if (searchExact) prefixList++;
int nUserIfs = parseStringList(prefixList, userIfs, MAX_IFS);
int found = 0;
struct ifaddrs *interfaces, *interface;
getifaddrs(&interfaces);
for (interface = interfaces; interface && found < maxIfs; interface = interface->ifa_next) {
if (interface->ifa_addr == NULL) continue;
int family = interface->ifa_addr->sa_family;
if (family != AF_INET && family != AF_INET6)
continue;
if (sock_family != -1 && family != sock_family)
continue;
if (family == AF_INET6) {
struct sockaddr_in6* sa = (struct sockaddr_in6*)(interface->ifa_addr);
if (IN6_IS_ADDR_LOOPBACK(&sa->sin6_addr)) continue;
}
if (!(matchIfList(interface->ifa_name, -1, userIfs, nUserIfs, searchExact) ^ searchNot)) {
continue;
}
bool duplicate = false;
for (int i = 0; i < found; i++) {
if (strcmp(interface->ifa_name, names+i*maxIfNameSize) == 0) { duplicate = true; break; }
}
if (!duplicate) {
strncpy(names+found*maxIfNameSize, interface->ifa_name, maxIfNameSize);
int salen = (family == AF_INET) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6);
memcpy(addrs+found, interface->ifa_addr, salen);
found++;
}
}
freeifaddrs(interfaces);
return found;
}
ncclResult_t ncclIbInit(ncclDebugLogger_t logFunction) {
static int shownIbHcaEnv = 0;
if(wrap_ibv_symbols() != ncclSuccess) { return ncclInternalError; }
if (ncclParamIbDisable()) return ncclInternalError;
if (ncclNIbDevs == -1) {
pthread_mutex_lock(&ncclIbLock);
wrap_ibv_fork_init();
if (ncclNIbDevs == -1) {
ncclNIbDevs = 0;
if (findInterfaces(ncclIbIfName, &ncclIbIfAddr, MAX_IF_NAME_SIZE, 1) != 1) {
WARN("NET/IB : No IP interface found.");
return ncclInternalError;
}
// Detect IB cards
int nIbDevs;
struct ibv_device** devices;
// Check if user defined which IB device:port to use
char* userIbEnv = getenv("NCCL_IB_HCA");
if (userIbEnv != NULL && shownIbHcaEnv++ == 0) INFO(NCCL_NET|NCCL_ENV, "NCCL_IB_HCA set to %s", userIbEnv);
struct netIf userIfs[MAX_IB_DEVS];
bool searchNot = userIbEnv && userIbEnv[0] == '^';
if (searchNot) userIbEnv++;
bool searchExact = userIbEnv && userIbEnv[0] == '=';
if (searchExact) userIbEnv++;
int nUserIfs = parseStringList(userIbEnv, userIfs, MAX_IB_DEVS);
if (ncclSuccess != wrap_ibv_get_device_list(&devices, &nIbDevs)) return ncclInternalError;
for (int d=0; d<nIbDevs && ncclNIbDevs<MAX_IB_DEVS; d++) {
struct ibv_context * context;
if (ncclSuccess != wrap_ibv_open_device(&context, devices[d]) || context == NULL) {
WARN("NET/IB : Unable to open device %s", devices[d]->name);
continue;
}
int nPorts = 0;
struct ibv_device_attr devAttr;
memset(&devAttr, 0, sizeof(devAttr));
if (ncclSuccess != wrap_ibv_query_device(context, &devAttr)) {
WARN("NET/IB : Unable to query device %s", devices[d]->name);
if (ncclSuccess != wrap_ibv_close_device(context)) { return ncclInternalError; }
continue;
}
for (int port = 1; port <= devAttr.phys_port_cnt; port++) {
struct ibv_port_attr portAttr;
if (ncclSuccess != wrap_ibv_query_port(context, port, &portAttr)) {
WARN("NET/IB : Unable to query port %d", port);
continue;
}
if (portAttr.state != IBV_PORT_ACTIVE) continue;
if (portAttr.link_layer != IBV_LINK_LAYER_INFINIBAND
&& portAttr.link_layer != IBV_LINK_LAYER_ETHERNET) continue;
// check against user specified HCAs/ports
if (! (matchIfList(devices[d]->name, port, userIfs, nUserIfs, searchExact) ^ searchNot)) {
continue;
}
TRACE(NCCL_INIT|NCCL_NET,"NET/IB: [%d] %s:%d/%s ", d, devices[d]->name, port,
portAttr.link_layer == IBV_LINK_LAYER_INFINIBAND ? "IB" : "RoCE");
ncclIbDevs[ncclNIbDevs].device = d;
ncclIbDevs[ncclNIbDevs].guid = devAttr.sys_image_guid;
ncclIbDevs[ncclNIbDevs].port = port;
ncclIbDevs[ncclNIbDevs].link = portAttr.link_layer;
ncclIbDevs[ncclNIbDevs].speed = ncclIbSpeed(portAttr.active_speed) * ncclIbWidth(portAttr.active_width);
ncclIbDevs[ncclNIbDevs].context = context;
strncpy(ncclIbDevs[ncclNIbDevs].devName, devices[d]->name, MAXNAMESIZE);
NCCLCHECK(ncclIbGetPciPath(ncclIbDevs[ncclNIbDevs].devName, &ncclIbDevs[ncclNIbDevs].pciPath, &ncclIbDevs[ncclNIbDevs].realPort));
ncclIbDevs[ncclNIbDevs].maxQp = devAttr.max_qp;
ncclNIbDevs++;
nPorts++;
pthread_create(&ncclIbAsyncThread, NULL, ncclIbAsyncThreadMain, context);
}
if (nPorts == 0 && ncclSuccess != wrap_ibv_close_device(context)) { return ncclInternalError; }
}
if (nIbDevs && (ncclSuccess != wrap_ibv_free_device_list(devices))) { return ncclInternalError; };
}
if (ncclNIbDevs == 0) {
INFO(NCCL_INIT|NCCL_NET, "NET/IB : No device found.");
} else {
char line[1024];
line[0] = '\0';
for (int d=0; d<ncclNIbDevs; d++) {
snprintf(line+strlen(line), 1023-strlen(line), " [%d]%s:%d/%s", d, ncclIbDevs[d].devName,
ncclIbDevs[d].port, ncclIbDevs[d].link == IBV_LINK_LAYER_INFINIBAND ? "IB" : "RoCE");
}
line[1023] = '\0';
char addrline[1024];
INFO(NCCL_INIT|NCCL_NET, "NET/IB : Using%s ; OOB %s:%s", line, ncclIbIfName, socketToString(&ncclIbIfAddr.sa, addrline));
}
pthread_mutex_unlock(&ncclIbLock);
}
return ncclSuccess;
}
ncclResult_t bootstrapCreateRoot(ncclUniqueId* id, bool idFromEnv) {
ncclNetHandle_t* netHandle = (ncclNetHandle_t*) id;
void* listenComm;
NCCLCHECK(bootstrapNetListen(idFromEnv ? dontCareIf : 0, netHandle, &listenComm));
pthread_t thread;
pthread_create(&thread, NULL, bootstrapRoot, listenComm);
return ncclSuccess;
}
static ncclResult_t bootstrapNetListen(int dev, ncclNetHandle_t* netHandle, void** listenComm) {
union socketAddress* connectAddr = (union socketAddress*) netHandle;
static_assert(sizeof(union socketAddress) < NCCL_NET_HANDLE_MAXSIZE, "union socketAddress size is too large");
// if dev >= 0, listen based on dev
if (dev >= 0) {
NCCLCHECK(bootstrapNetGetSocketAddr(dev, connectAddr));
} else if (dev == findSubnetIf) {
...
} // Otherwise, handle stores a local address
struct bootstrapNetComm* comm;
NCCLCHECK(bootstrapNetNewComm(&comm));
NCCLCHECK(createListenSocket(&comm->fd, connectAddr));
*listenComm = comm;
return ncclSuccess;
}
static ncclResult_t bootstrapNetGetSocketAddr(int dev, union socketAddress* addr) {
if (dev >= bootstrapNetIfs) return ncclInternalError;
memcpy(addr, bootstrapNetIfAddrs+dev, sizeof(*addr));
return ncclSuccess;
}
struct bootstrapNetComm {
int fd;
};
static ncclResult_t createListenSocket(int *fd, union socketAddress *localAddr) {
/* IPv4/IPv6 support */
int family = localAddr->sa.sa_family;
int salen = (family == AF_INET) ? sizeof(sockaddr_in) : sizeof(sockaddr_in6);
/* Create socket and bind it to a port */
int sockfd = socket(family, SOCK_STREAM, 0);
if (sockfd == -1) {
WARN("Net : Socket creation failed : %s", strerror(errno));
return ncclSystemError;
}
if (socketToPort(&localAddr->sa)) {
// Port is forced by env. Make sure we get the port.
int opt = 1;
SYSCHECK(setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt)), "setsockopt");
SYSCHECK(setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)), "setsockopt");
}
// localAddr port should be 0 (Any port)
SYSCHECK(bind(sockfd, &localAddr->sa, salen), "bind");
/* Get the assigned Port */
socklen_t size = salen;
SYSCHECK(getsockname(sockfd, &localAddr->sa, &size), "getsockname");
char line[1024];
TRACE(NCCL_INIT|NCCL_NET,"Listening on socket %s", socketToString(&localAddr->sa, line));
/* Put the socket in listen mode
* NB: The backlog will be silently truncated to the value in /proc/sys/net/core/somaxconn
*/
SYSCHECK(listen(sockfd, 16384), "listen");
*fd = sockfd;
return ncclSuccess;
}
(本文经授权后由OneFlow发布。原文:https://blog.csdn.net/KIDGIN7439/article/details/126712106?spm=1001.2014.3001.5502)
其他人都在看 点击“阅读原文”,欢迎Star、试用OneFlow新版本
-
解锁 DeepSeek 一体机:从购买到本地化部署,开启智算新征程
在当今数字化时代,人工智能(AI)技术的迅猛发展正深刻改变着各个行业的运作模式。大模型作为 AI 领域的核心驱动力,其应用范围不断拓展,对算力的需求也日益增长。在这一背景下,DeepSeek 一体机凭借其独特的优势,成为了众多企业和科研机构实现高效智算的关键设备。本文将深入探讨 DeepSeek 一体机的相关内容,包括其与 DeepSeek - R1 大模型的紧密联系、购买途径以及本地化部署的要点。
넶0 2025-04-02 -
迈络思与英伟达携手,以 IB 组网和 GPU 池化管理赋能算力调度新变革
在数字化转型的浪潮中,算力已成为驱动各行业创新发展的核心要素。随着人工智能、大数据、高性能计算等领域应用的不断深化,对算力的需求呈现出爆发式增长,且对算力的高效管理与灵活调配提出了更高要求。在此背景下,Infiniband 组网(IB 组网)、GPU 池化管理以及算力调度等技术成为构建先进计算基础设施的关键,而迈络思(Mellanox)与英伟达(NVIDIA)作为行业内的领军企业,正通过紧密合作,推动这些技术的创新发展与广泛应用。
넶0 2025-04-02 -
大空间下的数字互动变革:PICO、HTCVIVE 与数字人动作捕捉的融合探索
在科技飞速发展的当下,虚拟现实(VR)和增强现实(AR)技术正以前所未有的速度改变着人们的交互体验。大空间多人互动作为其中的重要应用方向,为用户带来了更加沉浸式、社交化的体验。而数字人动作捕捉技术则为虚拟角色赋予了更加真实生动的表现力。在这一技术浪潮中,PICO 和 HTCVIVE 等知名品牌凭借其先进的硬件设备,成为推动大空间多人互动和数字人动作捕捉应用落地的重要力量。
넶0 2025-04-02 -
英伟达 H20 引领算力租赁新时代,GPU 集群与 AI 服务器的协同变革
在当今数字化时代,人工智能(AI)的发展可谓日新月异,而算力作为 AI 发展的核心驱动力,其重要性不言而喻。英伟达(NVIDIA)作为全球图形处理器(GPU)领域的佼佼者,一直以来都在推动 AI 算力的前沿发展。随着英伟达新一代 AI 处理器 H20 的亮相,更是在算力租赁市场掀起了全新的波澜,同时也深刻影响着 GPU 集群与 AI 服务器的发展格局。
넶0 2025-04-02 -
DeepSeek 一体机:解锁 DeepSeek - R1 大模型本地化部署与智算新可能
在人工智能技术迅猛发展的当下,大模型已成为推动各行业智能化变革的核心驱动力。然而,如何高效地利用大模型的强大能力,实现本地化部署与便捷应用,成为众多企业和机构面临的关键问题。DeepSeek 一体机的出现,为这一难题提供了创新性的解决方案,尤其是其与 DeepSeek - R1 大模型的深度融合,在智算领域掀起了新的浪潮。
넶7 2025-04-01 -
Infiniband 组网与 GPU 池化管理:迈络思、英伟达引领算力调度新时代
在当今数字化高速发展的时代,算力已然成为推动各行业进步的核心动力。无论是人工智能领域的大规模模型训练,还是数据中心对海量数据的高效处理,对算力的需求都呈现出爆发式增长。为了满足这种需求,高效的网络架构和智能的算力管理策略显得尤为重要。Infiniband 组网(IB 组网)、GPU 池化管理以及算力调度等技术应运而生,而迈络思(Mellanox)与英伟达(NVIDIA)在这些关键技术领域中扮演着举足轻重的角色。
넶6 2025-04-01